o AT

o e
o

-

S

s

e

.
.

o

Zis

S

R e LA

i

RO

2 et

S S

R

ity

i

.
.

S

[
-
fos}
[ |
B
o
X
@
=3
I,
.,
o
Y
2o
—
—
mm
m
0
WU-
<
)
&)
mw
=
P
[

SURFACE INTERACTIONS

by
and J

Melcher

R

Zelazo

E.

R

December,

e




DYNAMICS AND STABILITY OF FERROFLUIDS: SURFACE INTERACTIONS

by

Ronald E. Zelazo and James R. Melcher
Massachusetts Institute of Technology

Cambridge , Massachusetts
Summary:

The nonlinear magnetiza#ion charsgcteristics of recently developed ferro-
fluids complicate studies of wave dynamics and stability. A general formulation
of the incompressible ferrohydrodynamics of a ferrofluid with nonlinear magneti-
zation characteristics is presented which distinguishes clearly between effects
of inhomogeneities in the fluid'properties end saturation effects from nonuniform
fields. The formulation makes it clear that with uniform and nonuniform fields
the magnetic coupling with homogeneous fluids is confined to interfaces; hence
it is a convenient representation for surface interactions.

Detailed attention is given tovwaves and instabilities on a planar interface
between ferrofluids stressed by an arbitrarily directed magnetic field. The close
connection with related work in electrohydrodynamics is cited and emphasis is given
to the effect of the nonlinear magnetization characteristics on oscillation fre-
quencies and conditions for instability. The effects of nonuniform fields are
investigated using guasi-one-dimensional models for the imposed fields in which
either a perpendicular or a tangential imposed field varies in a direction perpen-
dicular to the interface. Three experiments are reported which support the theoreti.
cal models and emphasize the interfacial dynamics as well as the stgbilizing effects
of a tangential magnetic field. The resonance frequencies of ferrohydrodynamic

surface waves are measured as a function of magnetization with fields imposed first



perpendicular, and second tangentlal, to the unperturbed interface. 1In a third
experiment, the second configuration is augmented by a gradient in the imposed
megnetic field to demonstrate the stabilization of a ferrofluid surface supported

a
against gravity over air; the ferromagnetic stabilization oﬁkRayleigh-Taylor

instability.

I. Introduction

A. Background

Ferrofluids, as recently developed by Rosensweig and his associates, are
colloidal dispersions of sub-micron sized ferrite particles in a carrier or parent
fluid such as kerosene (Rosensweig, 1966%). Unlike earlier fluids of this sort,
the particles do not flocculate upon the application of strong magnetic fields;
thermal agitation and the presence of a dispersing agent that coats each particle
guarantee a permanent colloid. Experiments indicate that there is only a small
dependence of viscosity and surface tension on magnetization. In kerosene-~based
fluids the conductivity, which is very small, is on the order of that of the base.

Numerous applications for these fluids appear possible, including novel
energy conversion schemes (Resler and Rosensweig, 1967), levitation devices
(Rosensweig, l966b), and rotating seals (Rosensweig et al, 1968). 1In these devel-
opments, an understanding of the fundamental ferrofluid dynamics is essential.

Research has been carried forward to understand the static resPonse’of the
fluids to the magnetization forces (Neuringer & Rosensweig, 196L4). In systems
of homogeneous ferroliquids, surface interactions are pafticularly important, as
emphasized by a recent investigation of the destabilizing influence of a magnetic
field initially imposed normal to the flat interface of a ferrofluid (Cowley &

Rosensweig, 1967). This work draws attention to the limitations arising from



static instability, and for the particular case considered, shows how account

can be taken of nonlinear msgnetization characteristies.

B. Scope

In the work presented here, a general formulation is developed for studying
wave dynamics and instability in nonlinear ferrofluids with bias fields that can
not only have an arbitrary orientation, but can also be nonuniform. The formu-
lation permits a clear distinction between the roles of inhomogeneity in the fluid
properties and nonuniformities in the imposed magnetic field.

Consideration is given to interfacial dynamics and iﬁstability of homogeneous
liquids separated by a planar interface stressed by a uniform field of arbitrary
orientation. Then, the effects of field gradients in such systems are explored for
particular field orientations. Finally, several experiments are described that
serve to illustrate the nature of ferrofluid surface interactions, with emphasis

given to the dynamicﬁ, rather than the static, behavior.

C. Dielectrovhoretic Analogy

If the magnetization characteristics of ferrofluids were linear, their dy-
namics would be the complete analog of electrohydrodynamic polarization inter-
actions: dielectrophoretic phenomena (Pohl, 1960). Because much information is
now available concerning this class of electrohydrodynamics, it is possible to cite
a number of studies that have direct implications for ferrohydrodynamics. The
analogy between dielectric and magnetic fluid mechanics is developed iﬁf@arly work
on linearly magnetized fluids (Melcher, 1963). The effects of free charge commonly
mask dielectrophoretic effects, and so high frequency ac electric fields are often

used to bias the fluids (Devitt & Melcher, 1965). Because of practical applications



to the orientation of cryogenic liquids in the zero-gravitiy environments of

space, analyses have been made of systems of homogeneous and inhomogeneous

liquids with interfaces stressed by essentially tangential fields with gradients
directed perpendicular to their interfaces (Melcher & Hurwitz, 1967), of homo-
geneous liquids interacting with concentrated field gradients (Melcher et al, 1968),
and of steady and dynamic linear and rotating flows confined by dielectrophoretic
"walls" that take advantage of concentrated field gradients (Melcher et al, 1969)
(Calvert & Melcher, 1969).

Much of the theoretical'develppment which follows is motivated by this pre-
vious activity in electrohydrodynamics. The major contribution in placing this
work in the context of ferrofluid dynamics is in the extensions of the formulation
to the case of nonlinear magnetization characteristics. The theoretical exten-
sions made here apply equally well to the dielectrophoretic interactions of

liquids having nonlinear polarization characteristics.

II. Formulation

A. Magnetization and Deformation: Field Equations

In the class of magnetic liquids available, the magnetization density, M, is
induéed colinear with the magnetic field intensity, H. The magnetization magnitude
characteristics of Fig. 1 therefore provide sufficient information for represent-
ing the effects of the fluid motion on the magnetic fields. In terms of the mag-

netic susceptibility,
M= x(la ....a ,H)H (1)
1 n

vhere H 2= HeH. Here, the parameters al +e. O are local properties of the
fluid. The susceptibiltity, ¥, is determined by this set of n parameters and the

magnitude of the local magnetic field intensity. For example Eq. (1) might take
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the forms (see Fig. 1) y = ‘H(QZH +1) ,oryx= @, sech ./E* a,, in which

case there are only two ai's. These might be determined by attempting to fit
the assumed relation to the magnetization characteristic.

The characteristic (Fig. 1) represents the magnetization of a homogeneous
liquid sample, a family of such curves is required to describe an inhomogeneous
ligquid. Although the parameter O is similar to the parameter H? in that it is
an Eulerian function of space and time [ai(f,t)], it differs from H® insofar as
it represents the local magnetic properties of the fluid, and, ignoring effects
of compressibility, can be identified with a given fluid particle.‘This results

Py

in

e (2)

Dt

The dependences of the ai's on r account for the contribution of fluid
inhomogeneity to variations in the local magnetization, while the dependence of
i on r accounts for the effect of a nonuniform magnetic field intensity.

It will be convenient at times to use the magnetic flux density B and per~

meability u, where in the usual way

B= ula,, ---Otn,HZﬁI_ s u=u (x+1) (3)

-7
MKS units are used, with u_ = brxio " .
In writing the field equations for the stressed fluid, it is helpful to

define the tensor

-2 2 n
Cjk—i;HijﬁL"z--i- Syx T, (k)

where ij is the Kronecker delta function. If these parsmeters are evaluated
at a given (ﬁ;ﬁ3 they can be written in terms of the appropriate susceptibilities
X and Xs defined geometrically in terms of the M-H curve in Fig. 1 . In terms

of X and X, Eq. (4) becomes:



H
Ejk = —ﬁj—H%—- (xs- X) + ij(x +1) (5)

because 3/ IH2 = (XS- X)UO/2H2 .

Interest here centers around motions initiated from a static equilibrium
wherein the magnetic field intensity has the equilibrium distribution H°(T),
and any inhomogeneity of the fluid is accounted for by equilibrium distributions

of the o,'s, ai°(?). The dynamic field varisbles then take the form

H 'ﬁog?) - v(r,t) (6)

0, °(F) + af (v,t) (1)

[}
1]

where - V{ represents the perturbation masgnetic field intensity and o' the

local perturbation in the magnetization parameter 0;. DNote that Eq. (6) suto-
matically guarantees that perturbations in H are irrotational. The condition
that the magnetic flux density be solenoidal gives a relation that must be satis—

fied by ¥ and the ai's.

vo{e @ wr @aIE - Wi} = o (8)

where the perturbation in permeability u' is, in turn:

n
wr= ) (3 oo 2 (3 wew (9)

i=1 ui
with the superscript zero indicating gquantities evaluated at [ai°,(H°)2].
To linear terms, these last two expressions require that Vep°H® = 0 and
n
e |Fe glL_) ' S [yo W) _

2 v [H (3(1. %~ Mo (cjk axk) =0 (10)

i=1 1o - J
with the components of ;;L given by either Eq. (%) or Eq. (5) evaluated at

[ai°,(H°)2]. Terms where an index appears twice and the summation is not



indicated explicitly, are to be summed 1 to 3.
The linearization of Eq. (2) yields n additional equations which relate

the o 's to the velocity v of the fluid.

3a., '

-—i —u o] —
% + v Vai 0 (11)

These last two expressions embody the influence of the fluid motions on the

magnetic field distribution.

B. Force Density and Stress Tensor

For a linear relationship between M and H, where ¥ and u are independent
of HZ, the classic Korteweg~Helmholtz force density -H2V/2 and its associated
stress tensor Tij = uHiHJ - %-Gijqu account for the coupling of the magnetic
field to the fluid (Stratton, 1941). Because effects of magnetization in the
absence of an applied field and thermodynamic effects such as fluid compressi-
bility and temperature are considered insignificant for the present purposes,
a derivation of the appropriate force density including the nonlinear magneti-
zation can be made by considering conservation of energy for a thermodynamic sub-
system consisting only of the magnetic fields as they are influenced by the
geometric deformations of the magnetized flﬁids. Energy storage in kinetic form
or in the form of internal (heat) energy is excluded. The basic conservation
theorem for the subsystem states that inputs of electrical power either lead to
an increase in energy stored in the magnetic field, or to work done on the
mechanical environment through deformations of the fluid caused by the desired
magnetization force density. This approach, so widely used in elementary lumped
parameter electromechanics for finding total electrical forces (Woodson & Melcher,
1968a), has been used to find the magnetization force density for cases in which

the M-H curves are linear (Woodson and Melcher, l968b). Because the derivation



for the nonlinear case followsthe same steps as given in this last reference,
only & sketch of the more general derivation need be given here.

It is convenient to think of the fluid as being magnetized by a magnetic
eircuit having the excitation current i, with variations of continuum variables
indicated by 6( ). Thus, incremental variations in fluid displacements E-are
given by GEl Then, with the magnetic fields established and the excitation cur-

rent, i, held constant, it cen be shown that

I[aw'- Fe8Elav = O (12)
with w' the coenergy density
H2
w' = I -2]=-u(al cee an,Hz)GH2 (13)
o

This latter expression is determined from the magnetization characteristic by
establishing the current, i, with the fluid constrained meéhanically.

The integration of Eq. (12) is carried out over the volume occupied by the
magnetic field, and g'is‘the desired magnetization force density. The steps
leading to this statement of conservation of energy are the same as for the case
vhere M and H are linearly relasted. It can also be shown that because i is main-
tained constant

n
‘jﬁw’d‘l = J Z %—"a-; Gaidv (1%)

i=1
v

Then, because the ai's are properties attached to the fluid particles,

8o, = - 8g-Voy (15)

3
i

In view of the last two equations, conservation of energy, as expressed by Eq.

(12), requires



ow' Tl okFav =
[- $a v, - F]-agav = 0 (16)

In a treatment such as this, £ is a thermodynamically independent variable.
Insofar as the isolated thermodynamic subsystem is concerned, SE can be inde~
pendently specified. Thus it follows that, although the volume, V, of Eq. (16)
is not arbitrary (it includes all of the volume occupied by the magnetic field),

because 85 is arbitrary the integrand must vanish, and therefore

n

= ' w'

F= -E . = Vo, (17)
=1 %y 1

Because F is defined in an incompressible fluid only to within the gradient
of a pressure, there are other forms in which the force density can be correctly
written (Cowley & Rosensweig, 19€7; Penfield & Haus, 1967). This one is most
convenient for the present purposes, because in systems of homogeneous fluids,
Va, = 0, except at interfaces. Thus, with F in the form of Eq. (17), it is

to interfaces
clear that the coupling is confined/for systems of homogeneous fluids in uniform
and nonuniform fields. Furthermore, the surface force density caused by discon-
tinuities in the ai'é is clearly perpendicular to the interface. As in thé linear
case, there are no shear surface force densities produced at interfaces by the
magnetic field.

It is a matter of direct evaluation to show that Eq. (17) for the force
density can be'exPressed in the form

F = V'? : Tij = uHiH,j - 513 w! (18)
It is the components of T that will be used to write the interfacial force

balance in Sees. III and IV.
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C. Equations of Motion
In addition to Egs. (10) and (11), which represent the influence of fluid
motion on the magnetic field distribution, and a linearized form of Eq . (17)

or (18), a complete description of the fluid dynamics in magnetic fields requires

the usual linearized Navier-Stokes equation for an inviscid fluid

po% + v(PO + p') - (po + p')gﬂ’- -FT (19)

and conservation of mass for an incompressible fluid

Vev = 6 (20)

i
o

D', veVp°

D (21)

These equations represent 3 +n scalar equations and one vector equation for the

dependent variables ¢y p', p', O cees O, V

I1II. Systems of Homogeneous Liquids: Uniform Fields

The fluid~field configuration shown in Fig. 2 is the basis for gaining

considerable insight into the "self-field" dynamics of systems &f ferrofluids.

In regions (a) and (b), the fluid has uniform properties: ai° = constant. It
follows from Egs. (11) and (7) that the perturbations a,' are then zero. Then,

as is evident from Eq. (17) for the force density, coupling is confined to the
interface. To make matters even simpler, an exact solution for the equilibrium
magnetic field in each region, as generated by the surface currents and the
magnet poles, is H® = defg + Hy°§;, where in a given region individual compon-
ents are uniform. Thus, the parameters Cig sre constants in a given region,
determined by the properties of the appropriate fluid and the relative magnitudes
of the field components. If the equilibrium quantities are to be associated with

a given fluid, the superscript (o) is replaced by an (a) or (b).

In the following sections the dispersion equation is developed for waves on

the interface. Because the imposed fields are uniform, the perturbation inter-
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facial forces can arise only from alterafions in the original field distribution
arising from transverse motions of the magnetized interface; hence, these waves
demonstrate 'self-field" effects. In Sec. IV, the complications of nonuniform
imposed fields are discussed. These perturbation surface forces can also arise
from motions through the initially nonuniform field.

At the outset, the distribution of fields is found, assuming a deflection

£ = Re £ exp(jwt ~k y -k z).
) P v "5z
A. Bulk Fields

Because the equilibrium fields have only x and y components, Eq. (10) be-

comes (D = a( )/ax),

N

2y 5 DA _ 2
LoDV - Jk 20, DY - (k2L

2 >
vy + kz g W = 0 (22)

ZZ

where it has been assumed that § = Re y(x)exp j(um-kvy-kzz), Substitution

shows that Eq. (22) in turn has solutions:

y = e ; g= Jyrs (23)

where o o
k T /Cax

2
i

w
it

2 2 2 22
[e] [#] o o o
[Cxx(kycyy + kzczz) - ky(cxy)] //Cxx

The pole faces are highly permeable, therefore the perturbation tangential field
is taken as zero at their surfaces. This is equivalent to making y(a) = O and
P(-b) = 0. The appropriate linear combination of solutions from Eq. (23) in each

region is then

N

wa = A e3Ya* sinh Ba(x -a); &b = ¢ e3Y9%sinn Bb(x-&b) (2k4)

The constants, A and C, are determined by the interfacial conditions that ﬁ'tan;

gential and B normal to the interface be continuous. In terms of the normal vector
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n = E;- (ag/ay)i;- (3&/32)3;, these conditions are

n x [H°- Wy = 0 (25)

and _ - -
ne] w®H+ W'H°- w°W )| = o (26)

respectively at x = £, with [F°] = Fo- F° and lel = ¢a- ¢, . To linear terms,

these expressions sre satisfied if at x = 0,

1l = DESIE (27)
and
0 2E 0 oxo | -
- udzgy ‘a‘%; I - 57 0wE = o (28)

Direct substitution of Eqs. (24) into these last two expressions gives
- F - o b o° .
A= g{ uo{]Hxﬂeb;xx cosh B b + jkyﬂu Hyﬂ sinh Bbb} /A (29)
where

= b . a .
A= uo(Bngx sinh Baa cosh Bbb + B Ley COsh B_a sinh Bbb)

and a similar expression for C, given by Eq. (29) with all a's and b's inter-

changed and the sign of the second term reversed. Thus, given the interface
geometry, the fields are obtained. The associated interfacial stresses can

now be computed.

B. Magnetization Surface Force Density

The x-directed magnetization surface force density is

_ s 13
T = Uijl]nj g o0 - e ﬂTxyﬂ (30)

which, in view of Eq. (18) requires the linearized forms of uH; and w'
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2 o (w032 0,0 _a_‘p_ %0 Q_‘P_ ° 03__\11
uHx LR (Hx) = M T Tx ~ Molyley 3y " B W 5% (31)

' |H02_0H°g_‘£+H°_a_§‘_
w%w{()]u<xx .-
Because the equilibrium fields satisfy the condition ﬂu°H;H;ﬂ =

Hy° l]u°H;ﬂ = 0, the last term in Eq. (30) vanishes. It follows from the last

two equations, after substitution of the traveling-wave form for 1, that

a = _ 0,90 Ty o, 0 _ . OO -

.= 1 HoHRLax DY * Jky(uonz;xy u Hy)q;ﬂ (32)
In turn, the surface force density can be related to the surface deflection
by using the fields computed in Sec. A., summarized by Eqs. (24) and (29)

"

- ~ 2 oq2 b a
T, = 5[}OHHXU Bbsacxxcxx cosh Bbb cosh Baa

2 010 2 . ‘ N
- ky fu Hyﬂ sinh B b sinh Baa] /A (33)

where A is defined with Eq. (29).

Written in the form of Eq. (33), it is evident that the surface force
density is either exactly in or out of temporal and spatial phase with the
deflection. The effect of the normal field H; is to increase further a given
deflection, while that of H; is to return the interface to its equilibrium
position. This latter force exists only if there are components of the wave
propagating in the y direction. These same qualitative consequences apply to
the linear magnetization case with the only difference being that the nonlin-
earity alters the magnitude of the magnetic field effects on the perturbation

interfacial shear.
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The dispersion equation follows from the requirement that the surface
force-displacement relation of Eq. (33) be consistent with the mechanical

equations of motion.
C. Dispersion Equation

Because there are no magnetic interfacial shear tractions, it serves the
present purposes to use an inviscid fluid model. Traveling-wave solutions of
the form p = Re ;(x)ej(um - kyy _kzz)in the bulk are determined By the condi-
tions that the normal velocity 5e zero at the pole faces and continuous at the
interface, and that the fluid displacement be £ = Re E exp j(wt-kyyw-kzz) at
the interface. It follows that the complex amplitudes of the perturbation

pressures at points o and B just above and below the interface have the

difference:
Aa AB _ (1)2 ~ A
P - p = - 5 &lo_coth ka + p, coth kb] + g&(p,- p_) (34)
Y
with k = (k; + k;) . - The balance of surface forces, as illustrated in Fig.

2, then requires that

p* - p° = T -k (35)

A

with Tx the complex amplitude of the magnetic surface force density. The last
term arises from the linearization of the surface force density TTBzi/Byz +
32£/32%], where T is the surface tension.

Substitution of Eqs. (33) and (3%) into Eq. (35), with the requirement

A

that & # 0, gives the desired dispersion equation for waves on the interface.
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2 = _ 3n _ K| 275902 b _a
0%, = eklpy- pg) + K°T - 3 [uoﬂﬂxﬂ ByBalaxlyx COSh B b cosh B a

20 0002 (36)
- kyﬂu Hyﬂ sinh Bbb sinh Ba%]

q

where pe pa coth ka + pb coth kb

- b . a
A = My [Bbcxx-51nh Baa cosh Bbb + Bagxx cosh Baa sinh Bbé]

Attention is now éiven to motions resulting from particular orientations of

the imposed fields. The general relation, Eq. (36), shows that although mag-
netization of the fluid in one direction can produce a saturation coupling to
fields in another direction, the interfacial dynamics resulting from an imposed
field of arbitrary orientation are essentially a superposition of effects due
to the tangential and perpendicular field components. This is not quite true,

of course, because the parameters B and Ci depend on both field components.

J

For qualitative purposes and for presently available fluids, however, this gives

a feir picture of the dynamics.

D. Perpendicular Field Waves and Instabilities

In the case of a magnetic liquid bounded from above by a nonmagnetic

gas or liquid, and stressed by a perpendicular field, parameters in Eq. (36)

reduce to
AR W L A o= T, = X+
TR c§y= 0 ;B = k (s7)
Bb = kn C:x = Xg *1

where it is convenient to define

1
N L@/ ex 1%y M D (38)
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In this case, Eq. (36) reduces to

mzpeq = gk(p‘b— pa) + KT - uO(ME)ZkZ/{tanh ke + [tanh (knb)]/n(x5+ l)}

(39)
As for the case of a linear magnetization characteristic, the phase velocity

of interfacial waves is reduced by the magnetic field. In the limit in
which the pole faces are well removed from the interface (b >> 1, ka >> 1),
Eq. (39) shows that there is a static instability that first occurs at the
Taylor wavelength 2m/k¥, x* =y g(pb- pa)/T as MZ is raised to the eritical
value:

* Y
)" = {—2%1-;“3—[1 + 1nixg + 1)] (k0)

A%

These last deductions are those calculated and experimentally verified by
Cowley and Rosensweig (1967). Note that Eq. (39) implies that there is an
exchange of stabilities, i.e., that the instability is incipient with w = O.

In Sec. VI, further support will be given to the model through an experi-
ment in which the wavelength (and hence k) is essentially fixed, and the

dependence of the frequency on Mz, as given by Eq. (39), verified.

E. Tangential Field Surface Waves

¢} —
With HX = 0 and the equilibrium H tangential to the interface, there
is a tendency for waves propagating along the field lines to be stiffened}
to propagate more rapidly. Parameters in region (a) are as for Sec. D, and in

region (b)

b _ b _ b _ b _ b
;xx = ;zz = X +1 3 ny o My X H
(k1)
b _ . - Xg* 1) , 2| Y
ny— xs+1 5 Bb— [(—————X+l>ky+kz

Thus, the dispersion equation becomes:
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b2

k2 (M
uoy(y)

w?p, = (X +1)8, (coth B b)/k + coth Ka]

€q

gk(p, - pa) + k3T + (k2)

As for the magnetically linear case, self-field effects are sbsent for
perturbations propagating across the lines of field intensity. In Sec. VI,
an experiment will show the upward shift in frequency of a given wavelength

predicted by Eq. (42) as a function of M;.

IV Systems of Homogeneous Liquids: Nonuniform Fields

The ferrohydrodynamics of interfaces in uniform imposed fields, as
developed in Sec. V, involves the self-consistent interaction of fields and
fluids. The perturbation in the magnetic surface force density in this case
arises from alterations of the field distribution caused solely b& distortions
of the fluid interface. On the other hand, if a nonuniform field is present,
the force perturbations can also arise simply from displacgments of the inter-
face through the imposed field. (See Calvert and Melcher, 1969, for a discus-
sion of "self-field" and "imposed-field" effects.)

Gradients in the imposed field are a consequence of field "curvature".
Examples are shown in Fig. 3, where the perpendicular and tangential field
configurstions are illustrated in cylindrical geometry for an interface having
the equilibrium radius of curvature, R.

It is not the objective here to develop the details of any given non-
uniform field configuration, but rather to highlight the essential features
of the dynamics in nonuniform fields by representing the field gradient effects
in terms of quasi-one-dimensional models, Inbthe following, it is still assumed
that the interface is initially flat (Fig. 2) but that the imposed field com-
ponents vary spatially with the x direction. Of course, cartesian field compo-
nents that vary with only one spatial coordinate cannot be both solencidal and

irrotational. However, by judicious approximations, aimed at representing
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situations such as those shown in Fig. 3 where the field does have curva-
ture but where interfacial wavelengths are small compared to the radius of
curvature, physically mesningful results can be obtained without becoming
involved in the details of Bessel's functions, spherical harmonics, etc.
The quasi-one-dimensigggijsummarizes the salient features of a wide class
of configurations, because the detailed nature of the field nonuniformity is
de-emphasized. The local effects of nonuniformities found in cylindrical,
spherical or other geometries are equally well represented by simply evaluating
the appropriate local gradients.

Because the fields are nonuniform, the susceptibility x is a function of
position in the bulk of the liquids. Even so, with the force density repre-
sentation of Eq. (17), the coupling between fluid and field remains confined

to the interface.
A. Boussinesq Approximation

In the fluid bulk, ui = 0 and the magnetic field distribution is again

predicted by Eq. (10), which becomes

ago o 2
jk_ 3y 3

3% ax,_ T Cok B B =0 (43)

Because the imposed fields are a function of x alone, C;k = c;k(x).
Thus, Eq. (43), although linear, has coefficients that depend on x.

In the following, the coefficients in Eq. (43) are approximated by
constants evaluated at thg equilibrium position of the interface, e.g.,
;gk(x) > ggk(o) = C;:k. With this approximation, familiar from the literature

for thermal convection instability (Boussinesq, 1903), Eq. (43) becomes the

constant coefficient expression
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¢ 3 32
(DZ ) -a—x‘f: + 25 5{3%—,% 0 (hd)

The "Boussinesq" approximation is particularly well justified here because
coefficients are evaluated at the interface, and the surface wave solutions
of interest tend to be confined to the neighborhood of the interface. Note
that the first term in Eq. (4l4) vanishes unless the fluid is both magnetically

nonlinear and stressed by a nonuniform field.
B. Perpendicular-Field Gradient Effects

If the imposed field takes the form H = H;(x)fx, Eq. (44) reduces to
P clc - c 2 c T _
D%y + [}Dcxx)/éx;]nw - Wk Jy = 0 (45)

where it has been assumed that ¥ = Re y(x) exp j(um-kyyu-kzz). It follows

that solutions in the respective regions are

-gX
= A e sinh §|x + (%) (46)
®) (2) [ b]

with ¢ and § defined in the sppropriate regions as

) 1
o= o )2, s 6 =[on GAenlo]t e

Note that the solutions, Eqs. (L46), have been chosen to satisfy the boundary
conditions at x = a and x = ~-b, discussed in Sec. IIIA. Even though the
equilibrium field is now spatially varying, the linearized conditions at
x = 0 reduce to Egs. (27) 'and (28), with the latter reducing further to
ﬂg;xD;ﬂ = 0. Substitution gives the constants A and A in terms of E in a

form similar to Eq. (29).
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The magnetization force density is found by following steps familiar
to those of Egqs. (30)-(33). Now the equilibrium part of T, is & function
of x and, as it is evaluated at the perturbed position of the interface,

contributes a perturbation term proportional to £. Thus, Eq.(30) becomes

T = E[DGE)IIESD - D gC KDyl (18)

~ A

Because i) has been evaluated in terms of £, this expression, together
with Eq. (3%4), can be introduced into the stress balance equation (35), to
give an expression that is homogeneous in £. The dispersion equation follows

N

from the condition that the coefficient of £ wvanish.

wio,, = &klpy= p,) + KT - K[DOSE)I0HS]

(49)

kuocxxcxxﬂﬂxﬂ /ic (0,+ 8,coth 6 a) 4% (-0, + 6, coth 6,b)7

In this expression, C;x evaluated in regions (a) and (b) is written as C:x and

b
xx’

c

In interpreting this expression, remember that each term arises because
of a perturbation surface force density. The last term is attributable to the
mutual coupling between field and fluid and is negastive. Although the field
nonuniformity does play a quantitative role, the self-field effects are quali-
tatively the same destabilizing influence as for a uniform imposed field.

The third term in Eq. (49) reflects the "imposed" field effect. It is
present because of the change in magnetic stress experienced by the interface
as it is displaced into a region of greater or lesser field intensity. For
example, if fluid (a) of Fig. 3a is magnetic, while that of (b) is not, then
there is a magnetic surface force acting downward on the interface in propor-

. 02 . o 21C .
tion to (Hx) at the interface. Suppose that [Du Hx] > 0, as in the case
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illustrated. Then an upward excursion of the interface is accompanied by

an increase in the local downward directed magnetic stress, hence a magnetic
surface force that tends to restore the equilibrium. This stabilizing effect
is consistent with Eq. (49), because in the example ﬂﬂiﬂ <0, which implies
that the third term tends to make w? positive., Specifically, for the example
in cylindrical coordinates, u°H® = BOR/(R-x), (Bo the equilibrium radisl

flux density at the interface) reguires the third term in Eq. (49) to become:

2
kB
o 1
I 0

- KIDGE)IMED = - —= 1 =5 (50)

If fluid (a) is magnetic while (b) is not, [1/u®[ is negative and the term on

the right in Eq. (50) is positive; hence it stabilizes the interface.

C. Tangential Field-Gradient Stabilization
Field configurations characterized bj Fig. 3b are modeled by the planar
interface of Fig. 34, with the imposed field a function of x. The dispersion
equation follows from steps similar to those of the previous section. Instead
of Eq. (45), Eq. (kb) reduces to

" (D O)C A ~ -
D2y + ——355—— DY -[(k;c;yuo/uch Ky = o (51)

so that, although solutions take the same form as in Eqs. (46), the parameters

governing the spatial distribution of § are

0yC c | - l/2‘
o= O)%/2 5 6 = [0+ (ke u )] (s52)

Linearized boundary conditions for the fields are again as given by Egs. (27)

and (28), which reduce to

N

Il = o 3 [uoyl = kagH; Iu®D (53)
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These serve to fix the coefficients Aa and Ab, and hence a.
The perturbation magnetic force density, linearized to include the non-
uniform imposed field, has the complex amplitude

~ 12 0,2 ~ e.c
T, = - 5 e IDE) 10 - gk Dy (54)

Finally, the dispersion equation follows as in previous sections by sub-
stituting B¢ . (54), with ¢ written in terms of &, together with Eq. (34),
into Eq. (35)

= _ 2 1g.c cy21C
i Peq = 8(Pp= 0,) + K°T + 5 QulID(H)®]

2 Cy2p.Cp2 c c
+ ky (Hy) fu-l /[“a(°a+ §, coth Gaa)+ “b(‘ o+ & coth be)] (55)

The last term in Eq. (55) shows that the self-field effects, although some~
what modified by the saturation effects of the nonuniform field distribution,»
always ténd to stabilize perturbations that propagate along the lines of mag-
netic field intensity. The third term on the right has a physical origin
similar to that of the imposed field term discussed in the previous section;
it can tend to stabilize or destabilize the interface, according to the sign
of the gradient in field intensity.

In the cylindrical example of Fig. 3b, field gradients are such that if
fluid (a) is magnetic and (b) is not, the field tends to produce a stable
equilibrium. In particular, the equivalent cartesian field is H; = HOR/(R-x),

and the third term of Eq. (55) becomes:
la.c I ¢ 2
5 lu ﬂ[D(Hyf] = H_Jul/R (56)

The most critical interfacial disturbances are those propagating across the
lines of equilibrium field intensity (ky = 0) and a condition that all wave-

lengths be stable follows from Eq. (55) as
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3 BCIDE)?1% > glo - py) (57)

Thus, the field gradient can be used to stabilize the equilibrium even with
the heavier fluid "on top'". This type of field-gradient stebilization has
assumed importance in dielectrophoretic orientation systems (Melcher & Hurwitz,
1967).

D. Concentrated Field-Gradient Stabilization

In Sec. IVC, it is assumed that the field gradient is small and comparable
in effect to the "self-fields" in its influence. By contrast, consider the
situation shown in Fig. ba, where magnetic sheets having the spacing s are used
in conjunction with a magnetic circuit to producehan imposed field with a grad-
ient that is large in the neighborhood of the equilibrium interface, But essen~
tially zero at adjacent points removed a distance s or more from the interféce.
(For simplicity, it is assumed that the intérface does nof reach the neighbor-
hood of the upper fringing field.) If the spacing, s, between sections of the
magnetic circuit is made small, this configuration can give imposed-field effects
much larger than those due to the self fields. Hence, the latter are ignored
in the following remarks.

As the interface passes through the fringing field region, the magnetic
surface force experienced by the interface switches from fully "on" to fully
"off" within a displacement on the order of the spacing, s. Thus, the configur-

ation is sometimes referred to as being of the "bang-bang" type.

Analogous dielectrophoretic interactions with concentrated field gradients
have been discussed elsewhere (Melcher, Hurwitz & Guttman, 1968). Attention is
confined here to indicating the simple generalizations of the electrohydrodynamic

models required to account for nonlinear magnetization characteristics.
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Interfacial oscillations and instabilities in cases like that of Fig. ka
can be represented with a surprising degree of accuracy by the equivalent
pendulum of Fig. 4b. The lengths, Qa and zb, of the fluid columns are selected
to approximate the inertial and gravitational characteristics of the mode to be
represented. It is assumed that the magnetic segments do not impede the flow
mechanically; an assumption that is most appropriate to motions in the x -z plane.
Pendulum motions are coupled to the magnetic field only at the interfaces.

Thus, Bernoulli's equation shows that,

, 4 .
(paza + pbzb) %E% = 2(pa' p‘o)g€ * TX(E) (58)

where‘T; is the total magnetic force (per unit y-z area) acting at the interfaces
Analog measurements (Guttman, 1967) show £hat a useful model represents the
variation of the imposed H; as a linear transition from (Hm)2 starting as
x = 5/2 and ending as H_= 0 at x = -s/2, as shown in Fig. 5a. The field is
essentially the constant H" between the segments. In accordance with the
assumption that the effect of the fluid on the field is negiigible, this dis-
tribution remains unaltered in the face of the fluid motions.

The surface force density Tx acting on the right interface of the pendu-
lum (Fig. Ub) is T, = I]TXXI] with T__ from Eq. (18) given as T, = =v'.

That is, H2(E)

3
il

-5 | Dulen? (59)
0
with H? given by Fig. 5a, evaluated at the interface; where x = § . Note that
™ is simply Eq. (59) with the upper limit of integration (5™)2,
As illustrated by the typical characteristiecs of Fig. 1, the effect of
increasing H? 1is to decrease Y. Thus, the saturation magnitude of the surface

force, Tm, is less than is obtained if p were constant at its zero field value.
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The typical variation of Tx is sketched in Fig. 5b.

The total magnetic force per unit area on the pendulum Tx is the sum of
the surface force densities from the two interfaces, as sketched in Fig 5c.
Like the dispersion equations of the previous sections, the equivalent pen—
dulum can be used to predict frequencies of oscillation and conditions for
instebility. Further, the neglect of self-fields makes it possible to account
for large amplitude effects. Given the fluid characteristics, and i ana S,
the dependence of T, on £ is known, and the pendulum motions are sim?ly fep-
resented in terms of a potential well. This approach to investigating the
large-amplitude oscillations has been presented in the discussion of dielec-
trophoretic concentrated field interactions (Melcher, Guttman & Hurwitz, 1968).
Note that the saturation magnetic stress, Tm, assumes the role played by %’u('Hm)2
in the linear case. For many engineering purposes, it is appropriate to rep-
resent the large amplitude effects by spproximating the transition region of
Fig. 5c by a straight line, saturating at T = + T". This model would be
useful in dealing with the magnetic analog to dielectrophoretic "wall-less
pipes" (Melcher, Hurwitz, and Fax, 1969).

The stability of the equivalent pendulum against small gmplitude oscilla-

tions is investigated by linearizing T, at £ = 0; from Eq. (59), -

9T 2
=25k (5=0) = - gup| L1 (60)
H2= (wm/2f

Substitution of this expression into Eq. (58) shows that the equilibrium is

stable if

1 my*
5 ul ———-(Hs) >(p_ - 0, )e (61)

Note that, with the understanding that u is evaluated at H = ﬁm/J?i this is
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just the condition given by Eq. (57). Those pertufbations that are most
critical for interfacial stabiiity in Sec. IVC (ky = 0) do not lead to self-

fields, so the equivalence of Egs. (57) and (61) is not surprising.

VI. Experiments

Three experiments serve to support the analytical models developed in the
previous section. They are similar to studies that have been reported in dielec-

trophoretic fluid dynamics (Devitt & Melcher, 1965), (Melcher & Hurwitz, 1967).

A. Perpendicular Field Surface Waves

Convenient experiments for verifying the dispersion relations for tangen-
tial and normally applied magnetic fields use boundary conditions to impose a
particular wavelength on the ferrofluid interface, and consist of the measurement
of the shift in resonance frequency resulting from additions of magnetic field.
A schematic representation of the experiment for the perpendicular field case
is shown in Fig. 6, together with the frequency shift data that is the objeéct of
the experiment.

Rectangular containers, vartially filled with ferrofluid, are driven by a
low frequency transducer to vibrate in the horizontal plane. By shaking the
container at appropriate frequencies, it ig possible to elicit resonances near
the natursal frequencies of the interface. These occur as the box contains an
integral number, n, of half-wavelengths over its length such that ky = nam/L ,
with the one-dimensional drive effective in constraining kz to be essentially
zero. Container dimensions in the horizontal plane are given in the figure
legend with the dsta. |

The magnetic field is produced by Helmholtz coils, driven by an adjustable
source of current in series with an ammeter which is calibrated to give the re-
quired field intensity at the interface. The experimental procedure is identical

for this and for the experiment of the next section. In all cases, the fluid
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depth is great enough to make effects of the container bottom negligible.

In a typical measurement, the resonance condition is established by
varying the driving frequency so as to approach the resonance once from
above and once from below. The resulting data are shown in Fig. 6.

In this normal field eXperiment, there is an inadvertent gradient in the
imposed magnetic field intensity at the interface; therefore, the prediction
provided by Eq. (49) is appropriate, in the limit where p? - uo, Ga + 0,

Ga +k, a >, and b > . If the frequency in the absence of the magnetic

field is defined as w_, then Eq. (49) predicts that

2 _ 2 | % c %
Wy 2uo(xc + 1)w§p mgp[l-+k/(xg +l)(6b- Ub) ] P

This expression is the basis for the solid curve shown in Fig. 6. The dis-~
crepancy between theory and experiment is of an order expected from sources
of experimental error. Typically, the resonance frequency is measured with
confidence limits of ¥ 5%. Calibration errors are particularly troublesome
because ohmic heating of the field coils introduces errors as great as 10%
in the inference of field intensities from coil current. Finally, the flat
equilibrium geometry of the interface is difficult to maintain at higher
fields; @& direct reflection of field-gradient effects not accounted for and
a source of error in establishing the proper value of k. Sufficiently short
wavelength modes are represented in the data of Fig. 6 that the self-field
effects dominate the gradient effects; the gradient term in Eq. (62) repre-
sents a correction under the experimental conditions.

Ultimately, the downward shift in resonance frequency is terminated by
interfacisl instability as the frequency reaches zero, and Eq. (40) is satis~

fied. With increasing magnetization, the instability condition is first met
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for a mode having the Taylor wavelength. This self-field instability is the
subject of the careful investigations of Cowley and Rosensweig and appears to

have a threshold which is well understood.
B. Tangential Field Surface Waves

With the tangential field experiment shown in Fig. 7, the resonance fre-~
quencies shift upward with increasing magnetization. The data shown result
from experimental procedures similar to those discussed in Sec. A. .In this
experiment, nonuniformities in the imposed field are not significant, and Eq.
(42) suffices to predict the frequency shifts. Again, theory and experiment

are within an agreement consistent with sources of experimental error.

C. Tangential-Field Gradient Stabilization

A dramatic demonstration of ferrofluid'dynamics consists of simply sus-
pending the liquid in the top of a partially filled plastic container with the
field from a small permanent magnet. This is the classic configuration of a
liquid suspended over a gas. The magnetic field easily orevents Rayleigh-
Taylor instability.

It should be clear from the discussion of uniform field interactions that
the self-field effect cannot account for stabilization of the "upside—down"
interface. In a perpendicular field, instability rather than stability is a
consequence of the uniform field. In a tangential field, interfacial pertur-
bations propagating across the field lines are not stabilized by the field.
However, gradients in the impésed field make it possible to retain a stable
equilibrium of the liquid over the gas, even with modest fields and gradients,
Note that the magnetic field is not used to support the fluid, rather just to

stabilize the fluid interface.
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The experiment shown in Fig. 8 demonstrates this gradient stabilization.
Note that the apparatus assumes essentially the geometry of Fig. 3b, with
Egs. (56) and (57) giving a theoretical prediction of the condition for
instability. Each experimental point represents a different equilibrium
position of the surface, such that Ho of Eq. (56) is proportional to 1/R and
to the current, i, in the field coils. This is the basis for the solid curve
in Fig. 8.

To obtain the data points shown, the field magnitude and gradient_aré
established by calibration curves aﬁ five positions over the 1 - 5 em. vertical
extent of the fluid volume. The fluid is injected between the magnetizable
plates until the set amount of current is no longer able to stabilize the
equilibrium. It is important that at all times the upper section of the con-
tainer is maintained leak-tight, so that the field is not used to support the
liquid. At the point of instability, the liquid suddenly runs down the four
edges of the container. The value of R (see Fig. 3b) at which this occurs,
along with the current setting, then constitutes a data point on Fig. 8,
indicated by a circle. Alternatively, some data points (squares) are obtained
by holding the fluid volume fixed, and reducing the current until instability
is observed.

Experimental results and theoretical predictions are well within the bounds

expected from sources of experimental error.

VII. Concluding Remarks

Many interactions betweeﬁ a ferrofluid and & magnetic field involve a
single homogeneous liquid with one or more free surfaces. The developments giwven
here emphasize that, even including effects of nonuniform fields and magnetic
saturation, these are surface interactions. Although major theoretical attention

is given here to including effects of nonlinear magnetization characteristics,
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in retrospect it can be recognized that, for many purposes, including an
approximate prediction of the experimental results reported in Sec. VI, a
judicious choice of magnetization parameters makes it possible to predict

the essential features of the dynamics from a theory based on an equivalent
linear magnetization characteristic . For example, Egs. (39) and (42) are in
many cases not altered greatly if Bb + k, xs* X and n * 1, provided that the
actual (saturated) susceptibility, X, is used to evaluate the magnetization.
The equivalent linear theory must incorporate the actual magnetization or it
is likely to be grossly ih‘error.

Although the situations investigated in Sec. III and beyond represent
surface interactions, the formulation given in Sec. II provides & convenient
starting point for the investigation of bulk instability and internal ferro-
hydrodynamic waves as found in inhomogeneous fluids. An important class of
interactions in this category involves fluids subject to combined thermal and
magnetic stress - especially if the temperature extremes in the fluid bulk
bracket the Curie point. Again, there is precedent for such studies from work

in electrohydrodynamics (Turnbull & Melcher, 1969).
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Fig. 1

Fig. 2

Fig. 3

Fig. &4

Fig. 5

Fig. 6

List of Figure Captions

Fluid magnetization density, M, as a function of the imposed mag-
netic field intensity H. The inserts show the dependence of X and

Xg On H.

Cross-sectional view of initially planar interface between magnetized
liquids (a) and (b). Current sheets at x =-b,a,as well as excitation
currents for the magnetic circuit, induce the initially uniform fields
T and B°. |

Examples of nonuniform equilibrium fields: a) Field perpendicular to
interface; b) Field tangential to interface; c) Quasi-one#dimgnsional
model for (a); (d) Model for (b).

a) Interface between fluids (a) and (b) interacts with field gradient
concentrated in neighborhood of equilibrium interface.

b) Pendulum model for (a).

a) Variation of imposed field intensity according to the quasi—onéQ
dimensional model for concentrated field gradient configuration of
Fig. k.

b) Magnetic surface force density on right interface in Fig. 4(Db).

c¢) Total magnetic force (per unit y-z area) on equivalent pendulum

of Fig. L(b).

a) Apparatus for measuring resonance frequencies with field imposed
perpendicular to interface; vibrations of the tank in the horizontal
plane drive the waves.

b) Relative frequencf shift as a function of the parameter Ep,propor-
tional to the spplied field intensity. The frequency shifts downward

as the applied field intensity is increased.



Fig. 7 a) Apparatus for measuring resonance frequencies in tangential field
b) Relative frequency shift as a function of Ft’ a parameter propor-
tional to the imposed magnetic field intensity. Ft is defined as the
square root of the last term in Eq. (42) divided by wd/TT .

Fig. 8 a) Apparatus for measuring conditioms for instability on interface in
adverse gravitational acceleration. Magnetized steel plates provide
the gradient in imposed field intensity required to stabilize the
interface.

b) Conditions under which incipient instability is observed. R is
the distance from the interface to the point at which the inner sur-

faces of the steel plates would converge if extended upward, while i

is the magnet current. The solid curve is predicted by Eq. (57).
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Fig. 2 Cross-sectional view of initially planar interface between magnetized

liquids (a) and (b). Current sheets at x =-b,,as well as excitation

currents for the magnetic circuit, induce the initially uniform fields .

_ﬁaandﬁ-b.



Fig. 3 Examples of nonuﬁiform equilibrium fields: a) Field-perpendicular to

interface; b) Field tangential to interface; c¢) Quasi-one-dimensional

model for (a); (d) Model for (D).
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Fig. 4 a) Interface between fluids (a) aznd (b) interacts with field gradient

concentrated in neighborhood of equilibrium interface.

b) Pendulum model for (a).



y
/i .2
(a) t (H)
/ l .
-s/2 | s/2 X
s T

(b)

(c)

o Y

Tm

Fig. 5 &) Variation of imposed field intensity according to the quasi-ocne-

dimensional model for concentrated field gradient configuration of

Fig. L.

b) Magnetic surface force density on right interface in Fig. W(b).

¢) Total magnetic force (per unit y-z area) on equivalent pendulum

of Fig. k(b).
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Fig. 8 a) Apparatus for measuring conditions for instability on interface in
adverse gravitational acceleration. Magnetized steel plates provide

the gradient in imposed field intensity required to stabilize the

interface.
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